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Introduction

The problem of vibrations of a tank con-
taining one or more fluids under pressure is of
fundamental interest in a variety of problems of
present day technology. A prime example of this
is the design of large fuel tanks for liquid pro-
pellant rockets, where the requirement of a light
weight structure and the large percentage of the
total mass contributed by the propellant, call for
as accurate an analysis as possible of the dynamic
interaction between fluid and elastic container.

The breathing vibrations of a pressurized
cylindrical shell containing a heavy liquid have
been investigated by Berry and Reissner' using
shallow shell theory. Lindholm et al2 carried on
an experimental investigation of partially filled
cylindrical tanks, Chu> analyzed a cylindrical
shell partially filled with an incompressible fluid
using Donnells4 equations as extended by Yu5
to the dynamic case and, following Reissner®,
he neglected the axial and circumferential inertial
terms.

In the present paper the differential
equations of motion are first established, within
the scope of the linear small displacement theory,
for an axisymetric pressurized shell filled with
one or more non-rmixable, non-viscous, com-
pressible fluids. Thereafter, the specific case is
considered of a closed simply supported circular
cylindrical shell, a) completely filled with a
single fluid and b) containing two non-mixable
fluids.

The present investigation was carried out
under NASA Contract No. NAS 8-11015,

Equations of Motion

a) Shell

Within the scope of the linear elastic theory
the differential equations of motion of a thin shell
can be written?,
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where:
u. is the displacement component in the
J j-direction,
Py is the component of the external force
in the i-direction,
m_ is the inertial mass per unit area of
the shell,
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Li‘ are linear differential operators in
J the shell coordinates associated with
the shell geometry,

-
t is time,

5i. {Kronecker's delta) has the value 1
J for i =j and zero otherwise.

The natural modes are obtained as the
gsolution of the set of 3 homogeneous differential
equations

[Li,j’. 3;5”:“’:]”5.‘: Y (2)

obtained by substituting

(3)
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into equation (1).

The functions U, , satisfying the homo-
geneous system (2) and associated boundary con-
ditions, characterize the mode shape associated
with the frequency Wy

The requirement that equations (2) have
non-trivial solutions leads to the frequency
equation associated with the problem.

b) Fluid

The small motion of a compressible non-
viscous fluid are governed by the equation
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where:
q =p-p0 is the pressure fluctation about
the mean value p o *
c is the velocity of sound in the

o
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The acceleration of a fluid particle in the x;-
direction is given by

fluid at the pressure Py »

is the Laplacian operator,
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where p_ is the density of the fluid and u
componex%: of velocity in the xi-direction.
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c) Interaction Between Fluid and Shell

The interaction between the fluid and the
shell is obtained by equating the normal acceler-
ations and pressures of fluid and shell at the shell

surface. Thus
a\ - 3\ ___L)_‘
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at the shell surface. The indicies 8 and f refer
to shell and fluid, and n denotes the normal dir-
ection.

If there are two non-mixable fluids inside
the shell then, under the assumption that the dyna-
mic overpressure as well as the pressure due to
gravity are small as compared with the static
pressure p_, the following condition must be sat-
isfied at the interface

6=,

Uy = Uy

(3

which by equation (5) implies

198, 1239

P = Q)
where n, is the direction normal to the inter-
face.

Fig.! Coordinate System
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The Completely Filled Cylindrical Tank

For a cylindrical shell the differential
equations (1) can be written as’s

where:

u, v, w, are the displacement components
in the x, 0, and r directions
(see Figure 1),

a, h, m , are the radius, wall thickness,
and mass per unit area of shell,

v,D =Eh/(1-v2), are Poisson's ratio, and
membrane stiffness respectively,

is the static pressure, and q the
dynamic overpressure acting on the
shell,
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For the simply supported shell the solutions
of the associated homogeneous equations are of
the form

Tt .
w, U, cos™ 2 cosnd sinw, t
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where l is the length of the cylindrical shell, and

and W are constant coefficients.
Tma ﬂuurinequatxon (T) in cylindrical coordinates
has a solution of the form

()

Q= O Jn (\S)sm cosnesmu X

where the J 1is the Bessel function of the first
kind and ordet n , and

X (Jﬁ)l (mﬂa) ( :)’-nz_pt (l3)
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Substituting (11) and (12) into (6) and (7) we
obtain

(1s)
(16)
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where the prime indicates differentiation with
respect to the argument. Substituting equation
(15) and {(11) into (10) we obtain i
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The requirement that (17) has a non-trivial solu-
tion leads to the characteristic equation
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where:
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For the axisymetric case (n =

0) equation (18)
reduces to

{(\',ALB)DT'a“) (2-pY)-vet=0

(18"
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with
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The solution of the problem requires that
equations (16) and (18) be simultaneously satis-
fied.

The Partially Filled Cylindrical Tank

Let the index {1 = 1, 2 indicate the bottom
and top parts of the cvlindrical shell as shown in
Figure 1. The differential equations (1) can then
be written as

(20)

where the meaning of the symbols is the same as
for the completely filled tank,

For the simply supported shell the solutions
of the associated homogeneous equations can be
assumed in the form of

u= U cost Zcosndsinwt
(21a)

v, =V, sinB¥ sinn@ sinwt

W, = W,sine%cosne sinot

uz U\cosl{};—xcosne sinwt
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v, = VysinR 5 sinnd sinwt
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P e .
v, = Wsinf 3 cosnBsinwt

subject to the conditions that at x = 1,

(22)
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Equation (22) yields

L
BeotRE + BcotRy =0

(23

As before we assume solutions of the fluid equa-
tion (4) of the form



(24a)
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where:
A= (2) g2 = (B0 (252)
=2V = (V2 - (250)
o= (88 (25¢)
where ¢, and c, are the velocities of sound of

the respective fluids. The satisfaction of equation
(9) for all values of r requires that

(26)

Substituting (21) and (24) into {6) and (7) we obtain

9= wtapBWV, sinB X cosnd sinwt (27s)
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Substitution of equation (27) into (20) leads
finally to the pair of characteristic equations
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where:

a, =i+ ae2m+gl)+ e(n‘*&‘)I

(30)

and ®, ¢ are defined in equation (19).

In the axisymetric case (n = 0) equations
(29) and (30) reduced to

(29)

(30}

(- 2, J(a*-8)-v2et =0
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The solution of the problem requires that
equations (23), (28) and (29) be simultaneously
satisfied.

Numerical Examples

I} Full Tank

For the axisymetric case we write equation
(18') in the form

(3ta)

a_ 1} L8 ]
Q, B, [a” o, -8t

or
Q‘=a‘[|+ (F_B_%‘—-_'] (3ib)
K i et an
with
B=B(A\)=~ % (32)
(Vo - (33)
let

L
3=4; V=015 a,=1.000; w=150

m=1; B= 2207854

a) To determine the first natural frequen-
cy we start withQ =0 and compute A_and B
from equations (33 and (32). We then s8bstitute’
these values into the right hand side of equation
{31a) to compute ,. We repeat these cycles
until there is no furlher change. For the numer-
ical values given, we obtain after three iteration
cycles

= 0.1230

b} To determine the second natural fre-
quency we start with 2 = P and proceed as
before using eguation (ﬂb) instead of (31a). After
two iterations we obtain

0N=0.61843

Figure 2 shows the graphical solution for
this case.



) Partially Filled Tank

Let
se=1%10; e=5%10"7; wu,=150; m,=0.15;
! L
£20300; 5=0075; 3=2)

Figure 3 shows the curves B, correspond-
ing to. solutions of equations (29') and the curves
B, representing equation {28). The intersections
of both sets of curves are the solutions of the
system (29') and (28). In the same figure the
ratios

£ 8 5

are also plotted as functions of 2. An iteration
procedure similar -to the one outlined above
yvielded for the first intersection

=1.005; A=3.196; R=1.004; A=13.012

Figure 4 shows the solution of the continuity
equation (23) for the above given values of By, B
and 1/a. The pairs of values l s80.0obtained
determine the different liquid levels zior which the
system will vibrate at the frequency

o= Y2 <1005 [

Conclusions

The empty tank has three (two for n = 0)
natural frequencies associated with a given mode
shape, whereas, for the completely filled tank
there can be any number of such natural frequen-
cies. Moreover, the lowest natural frequency is
always lower and the highest is at most equal to
the corresponding natural frequencies of the empty
tank.

When two fluids are present in the shell we
have that, for the axisymetric case, the frequen-
cies are grouped into a low and a high range. The
low range frequencies are lower than the lowest
and the high range frequencies higher than the
highest natural frequencies of the corresponding
empty shell.

The case of n other than zero has not been
investigated thoroughly but it is believed that
similar conclusions can be drawn.

For a given circumferential mode shape
there are in general several levels of the separa-
tion surface associated with the same natural
frequency. However, if the liquid level is also
prescribed there may not exist a corresponding
natural frequency.

This property of the solution deserves fur-
ther investigation, for it may very well imply,
that when the liquid level changes, instability
conditions which may induce sloshing are set up.
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F1G.2 FULL TANK — SOLUTION FOR
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THE AXISYMMETRIC CASE
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FiG.4 PARTIALLY FILLED TANK—AXISYMMETRIC CASE
‘ SOLUTION OF CONTINUITY FQUATION




